Long-term administration of pirfenidone improves cardiac function in mdx mice.
نویسندگان
چکیده
Duchenne muscular dystrophy, an X-linked recessive neuromuscular disorder due to lack of the protein dystrophin, manifests as progressive muscle degeneration and cardiomyopathy with increased fibrosis. The exact mechanisms involved in fibrosis are unknown, but a cytokine, transforming growth factor-beta (TGF-beta), is a likely mediator. This study tested whether the TGF-beta antagonist, pirfenidone, could reduce cardiac fibrosis. Eight-month-old mdx mice were treated for 7 months with 0.4%, 0.8%, and 1.2% pirfenidone in drinking water; untreated water was given to control mdx and C57 mice. Mice treated with 0.8% and 1.2% pirfendone had lowered cardiac TGF-beta mRNA and improved in vitro cardiac contractility (P < 0.05) to levels consistent with C57 mice, yet without a change in cardiac stiffness or fibrosis. These results show that the TGF-beta antagonist, pirfenidone, can improve cardiac function in mdx mice, potentially providing a new avenue for developing cardiac therapies for patients with Duchenne muscular dystrophy.
منابع مشابه
Glucocorticoid-Treated Mice Are an Inappropriate Positive Control for Long-Term Preclinical Studies in the mdx Mouse
BACKGROUND Dmd(mdx) (mdx) mice are used as a genetic and biochemical model of dystrophin deficiency. The long-term consequences of glucocorticoid (GC) treatment on dystrophin-deficient skeletal and heart muscle are not yet known. Here we used systematic phenotyping to assess the long-term consequences of GC treatment in mdx mice. Our investigation addressed not only the effects of GC on the dis...
متن کاملLong-term blinded placebo-controlled study of SNT-MC17/idebenone in the dystrophin deficient mdx mouse: cardiac protection and improved exercise performance
AIMS Duchenne muscular dystrophy (DMD) is a severe and still incurable disease, with heart failure as a leading cause of death. The identification of a disease-modifying therapy may require early-initiated and long-term administration, but such type of therapeutic trial is not evident in humans. We have performed such a trial of SNT-MC17/idebenone in the mdx mouse model of DMD, based on the dru...
متن کاملLong-term wheel running compromises diaphragm function but improves cardiac and plantarflexor function in the mdx mouse.
Dystrophin-deficient muscles suffer from free radical injury, mitochondrial dysfunction, apoptosis, and inflammation, among other pathologies that contribute to muscle fiber injury and loss, leading to wheelchair confinement and death in the patient. For some time, it has been appreciated that endurance training has the potential to counter many of these contributing factors. Correspondingly, n...
متن کاملChronic Losartan Administration Reduces Mortality and Preserves Cardiac but Not Skeletal Muscle Function in Dystrophic Mice
Duchenne muscular dystrophy (DMD) is a degenerative disorder affecting skeletal and cardiac muscle for which there is no effective therapy. Angiotension receptor blockade (ARB) has excellent therapeutic potential in DMD based on recent data demonstrating attenuation of skeletal muscle disease progression during 6-9 months of therapy in the mdx mouse model of DMD. Since cardiac-related death is ...
متن کاملEvaluation of Skeletal and Cardiac Muscle Function after Chronic Administration of Thymosin β-4 in the Dystrophin Deficient Mouse
Thymosin beta-4 (Tbeta4) is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. We studied the effects of chronic administration of Tbeta4 on the skeletal and cardiac muscle of dystrophin deficient mdx mice, the mouse model of Duchenne muscular dystrophy. Female wild type (C57BL10/ScSnJ) a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Muscle & nerve
دوره 34 3 شماره
صفحات -
تاریخ انتشار 2006